Function Based Metagenomics Approach for Obtaining Lipase from Acid Mine Drainage Site

Havva Esra Tütüncü, Nevin Gul Karaguler, Merve Oztug, Nurgul Celik Balci, Melek Tuter

Abstract


Metagenomics is the culture independent study of microbial populations present in any environment. The number of newly discovered enzymes increases rapidly with the advances in metagenomics. The studies of metagenomics are either accomplished by a sequence based or function based approach. In sequence based approach, either samples are directly sequenced and they are associated with some functions, or new genes are found by using the knowledge about already identified homologous sequences. In function based approach, a metagenomic library is constructed and each clone is screened in terms of function or sequence.

In this work, environmental samples from an acid mine drainage site (Balıkesir, Turkey) were collected. Microbial population was enriched and metagenomic library was constructed using fosmid vectors. About 12000 clones were screened in terms of lipolytic activity and two of them showed positive result. To further analyze the samples, partial sequencing, preliminary functional characterization and subcloning strategies were applied. In this report, it is aimed to serve the recent developments in metagenomics and exemplify functional metagenomic strategies, with an emphasis on the acidophilic samples

Full Text:

PDF

References


Akcil, A., & Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12–13 SPEC. ISS.), 1139–1145.

Althani, A. A., Marei, H. E., Hamdi, W. S., Nasrallah, G. K., El Zowalaty, M. E., Al Khodor, S., … Cenciarelli, C. (2016). Human Microbiome and its Association With Health and Diseases. Journal of Cellular Physiology, 231(8), 1688–1694.

Amimo, J. O., El Zowalaty, M. E., Githae, D., Wamalwa, M., Djikeng, A., & Nasrallah, G. K. (2016). Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Archives of Virology, 161(4), 887–897.

Balci, N., Menekşe, M., Karagüler, N. G., Şeref Sönmez, M., & Meister, P. (2016). Reproducing Authigenic Carbonate Precipitation in the Hypersaline Lake Acıgöl (Turkey) with Microbial Cultures. Geomicrobiology Journal, 33(9), 758–773.

Bashir, Y., Pradeep Singh, S., Kumar Konwar, B., Bashir, Y., Pradeep Singh, S., & Kumar Konwar, B. (2014). Metagenomics: An Application Based Perspective. Chinese Journal of Biology, 2014, 1–7.

Bell, P. J. L., Sunna, A., Gibbs, M. D., Curach, N. C., Nevalainen, H., & Bergquist, P. L. (2002). Prospecting for novel lipase genes using PCR. Microbiology, 148(8), 2283–2291.

Bertrand, H., Poly, F., Van, V. T., Lombard, N., Nalin, R., Vogel, T. M., & Simonet, P. (2005). High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. Journal of Microbiological Methods, 62(1), 1–11.

Borrelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774–20840.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Caccavo, F., Lonergan, D. J., Lovley, D. R., & Davis, M. (1994). Acetate- Oxidizing Dissimilatory Metal-Reducing Microorganism. Microbiology, 60(10), 3752–3759.

Cardenas, J. P., Quatrini, R., & Holmes, D. S. (2016). Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Research in Microbiology, 167(7), 529–538.

Chen, R., Li, C., Pei, X., Wang, Q., Yin, X., & Xie, T. (2014). Isolation an Aldehyde Dehydrogenase Gene from Metagenomics Based on Semi-nest Touch-Down PCR. Indian Journal of Microbiology, 54(1), 74–79.

Elsas, J. D., Speksnijder, A. J., & van Overbeek, L. S. (2008). A procedure for the metagenomics exploration of disease-suppressive soils. Journal of Microbiological Methods, 75(3), 515–522.

Escobar-zepeda, A., León, A. V. De, & Sanchez-flores, A. (2015). The Road to Metagenomics : From Microbiology to DNA Sequencing Technologies and Bioinformatics, 6(12), 1–15.

Fan, Z., Yue, C., Tang, Y., & Zhang, Y. (2009). Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Molecular Biology Reports, 36(6), 1515–1519.

Ferrer, M., Golyshina, O., Beloqui, A., & Golyshin, P. N. (2007). Mining enzymes from extreme environments. Current Opinion in Microbiology, 10(3), 207–214.

Ferrer, M., Martínez-Martínez, M., Bargiela, R., Streit, W. R., Golyshina, O. V., & Golyshin, P. N. (2016). Estimating the success of enzyme bioprospecting through metagenomics: Current status and future trends. Microbial Biotechnology, 9(1), 22–34.

Gudina, E. J., Teixeira, J. A., & Rodrigues, L. R. (2016). Biosurfactants produced by marine microorganisms with therapeutic applications. Marine Drugs, 14(2).

Hallberg, K. B., & Johnson, D. B. (2001). Biodiversity of Acidophilic Prokaryotes. Advances in Applied Microbiology, 49, 37–84.

Handelsman, J. (2004). Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669–685.

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5(10), R245–R249.

Hårdeman, F., & Sjöling, S. (2007). Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiology Ecology, 59(2), 524–534.

Hasan, F., Shah, A. A., & Hameed, A. (2009). Methods for detection and characterization of lipases: A comprehensive review. Biotechnology Advances, 27(6), 782–798.

Ilmberger, N., Güllert, S., Dannenberg, J., Rabausch, U., Torres, J., Wemheuer, B., … Streit, W. R. (2014). A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE, 9(9), 1–12.

Jiang, Z., Wang, H., Ma, Y., & Wei, D. (2006). Characterization of two novel lipase genes isolated directly from environmental sample. Applied Microbiology and Biotechnology, 70(3), 327–332.

Jogler, C., Lin, W., Meyerdierks, A., Kube, M., Katzman, E., Flies, C., Pan, Y., Amann, R., Reinhardt, F. and Schüler, D., 2009. Towards cloning the magnetotactic metagenome: Identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Applied Environmental Microbiology, 75, 3972-3979.

Johnson, D. B., & Hallberg, K. B. (2003). The microbiology of acidic mine waters. Research in Microbiology, 154(7), 466–473.

Jones, D. S., Albrecht, H. L., Dawson, K. S., Schaperdoth, I., Freeman, K. H., Pi, Y., … Macalady, J. L. (2011). Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. The ISME Journal, 6(1), 158–170.

Kennedy, J., O'Leary, N. D., Kiran, G. S., Morrissey, J. P., O'Gara, F., Selvin, J., & Dobson, A. D. W. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology, 111(4), 787–799.

Knietsch, A., Waschkowitz, T., Bowein, S., Henne, A. and Daniel, R. (2003). Construction and screening of metagenomic libraries derived from enrichment cultures, Generation of a gene bank for genes conferring alcohol oxido reductase activity in E. coli. Appl Environ. Microbiology, 69, 1408–1416.

Kotik, M. (2009). Novel genes retrieved from environmental DNA by polymerase chain reaction: Current genome-walking techniques for future metagenome applications. Journal of Biotechnology, 144(2), 75–82.

Latorre, M., Cortis, M. P., Travisany, D., Di Genova, A., Budinich, M., Reyes-Jara, A., … Maass, A. (2016). The bioleaching potential of a bacterial consortium. Bioresource Technology, 218, 659–666.

Li, Y., & Li, H. (2014). Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors. Journal of Basic Microbiology, 54(3), 226–231.

Loganathachetti, S.D., & Muthuraman, S. (2015). Biomedical potential of natural products derived through metagenomic approaches. RSC Advances, 5(122), 101200–101213.

López-López, O., Cerdán, M. E., & González Siso, M. I. (2014). New extremophilic lipases and esterases from metagenomics. Current Protein & Peptide Science, 15(5), 445–55.

Luo, C., Rodriguez-r, L. M., & Konstantinidis, K. T. (2013). A User’s Guide to Quantitative and Comparative Analysis of Metagenomic Datasets. Microbial Metagenomics, Metatranscriptomics, and Metaproteomics (1st ed., Vol. 531). Elsevier Inc.

Ouyang, L. M., Liu, J. Y., Qiao, M., & Xu, J. H. (2013). Isolation and biochemical characterization of two novel metagenome-derived esterases. Applied Biochemistry and Biotechnology, 169(1), 15–28.

Rabausch, U., Juergensen, J., Ilmberger, N., Böhnke, S., Fischer, S., Schubach, B., … Streit, W. V. (2013). Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Applied and Environmental Microbiology, 79(15), 4551–4563.

Rajendhran, J., & Gunasekaran, P. (2008). Strategies for accessing soil metagenome for desired applications. Biotechnology Advances, 26(6), 576–590.

Rashamuse, K., Ronneburg, T., Hennessy, F., Visser, D., Van Heerden, E., Piater, L., … Brady, D. (2009). Discovery of a novel carboxylesterase through functional screening of a pre-enriched environmental library. Journal of Applied Microbiology, 106(5), 1532–1539.

Rhee, J. K., Ahn, D. G., Kim, Y. G., & Oh, J. W. (2005). New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Applied and Environmental Microbiology, 71(2), 817–825.

Roh, C., & Villatte, F. (2008). Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism. Journal of Applied Microbiology, 105(1), 116–123.

Rohwerder .T.. Gehrke. T.. Kinzler. K. and Sand. W.. 2003. Bioleaching review part A. progress in bioleaching. fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiol Biotechnology. 63.239-248.

Sambrook, J. & Russell, D.W., 2001. Molecular Cloning, A Laboratory Manual, 3rd Edition Page 1.32. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sharmin, S., Yoshino, E., Kanao, T., & Kamimura, K. (2016). Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Bioscience, Biotechnology, and Biochemistry, 80(2), 273–8.

Shiers. D. W.. Ralph. D. E. and Watling. H. R.. 2010. A comparative study of substrate utilisation by Sulfobacillus species in mixed ferrous ion and tetrathionate growth medium. Hydrometallurgy. 104.363-369.

Solomon, S., Kachiprath, B., Jayanath, G., Sajeevan, T. P., Bright Singh, I. S., & Philip, R. (2016). High-quality metagenomic DNA from marine sediment samples for genomic studies through a preprocessing approach. 3 Biotech, 6(2), 1–5.

Streit, W. R., & Schmitz, R. A. (2004). Metagenomics - The key to the uncultured microbes. Current Opinion in Microbiology, 7(5), 492–498.

Sure, S., Ackland, M. L., Torriero, A. A. J., Adholeya, A., & Kochar, M. (2016). Microbial nanowires: an electrifying tale. Microbiology, 162(12), 2017–2028.

Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(1), 3.

Tirawongsaroj, P., Sriprang, R., Harnpicharnchai, P., Thongaram, T., Champreda, V., Tanapongpipat, S., … Eurwilaichitr, L. (2008). Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. Journal of Biotechnology, 133(1), 42–49.

Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., … Banfield, J. F. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428(6978), 37–43.

Uchiyama, T., & Miyazaki, K. (2009). Functional metagenomics for enzyme discovery: challenges to efficient screening. Current Opinion in Biotechnology, 20(6), 616–622.

Ulloa, G., Collao, B., Araneda, M., Escobar, B., ??lvarez, S., Bravo, D., & P??rez-Donoso, J. M. (2016). Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH? Enzyme and Microbial Technology, 95, 217–224.

Valenzuela, L., Chi, A., Beard, S., Orell, A., Guiliani, N., Shabanowitz, J., … Jerez, C. A. (2006). Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnology Advances, 24(2), 197–211.

Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74.

Wang, H. X., Geng, Z. L., Zeng, Y. and Shen, Y. M., 2008. Enriching plant microbiota for a metagenomic library construction. Environmental Microbiology, 10,2684-2691

Williams, L. J. S., Tabbaa, D. G., Li, N., Berlin, A. M., Shea, T. P., Maccallum, I., … Gnirke, A. (2012). Paired-end sequencing of Fosmid libraries by Illumina, 2241–2249.

Culligan, E. P., Marchesi, J. R., Hill, C., & Sleator, R. D. (2014). Combined metagenomic and phenomic approaches identify a novel salt tolerance gene from the human gut microbiome. Frontiers in Microbiology, 5(APR), 1–9.

Huo, Y., Cheng, H., Post, A. F., Wang, C., Jiang, X., Pan, J., … Xu, X. (2015). Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanologica Sinica, 34(4), 92–113.

Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLOS Computational Biology, 6(2).

Zeng, L., Huang, J., Zhang, Y., Qiu, G., Tong, J., Chen, D., … Luo, X. (2008). An effective method of DNA extraction for bioleaching bacteria from acid mine drainage. Applied Microbiology and Biotechnology, 79(5), 881–888.




DOI: http://dx.doi.org/10.1000/ijses.v0i0.129

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 International Journal Series in Engineering Science (IJSES) (ISSN: 2455-3328)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.