A REVIEW ON BASIC UNDERSTANDING OF ANEURYSM AND POSSIBLE TECHNIQUES IN ASSESSING THE RISK OF ITS RUPTURE
Abstract
Full Text:
PDFReferences
. Anton, R., Chenb, C.Y., Hungb, M. Y., Finolc, E.A., Pekkanb, K., (2013), Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field, Computer Methods in Biomechanics and Biomedical Engineering, 18(9): 981–992.
. Bai, H. G., Naidu, K. B., (2013), Computer simulation of blood flow in arteries affected by multiple aneurysm, Indian Journal of Computer Science and Engineering (IJCSE), 3(6): 807-811.
. Berg, P., Janiga, G., Beuing, O., Neugebauer, M., Thevenin, D., (2013), Hemodynamics in multiple intracranial aneurysms: The role of shear related to rupture, International Journal of Bioscience, Biochemistry and Bioinformatics, 3(3): 177-181.
. Bluestein, D., Niu, L., Schoephoerster, R. T., Dewanjee, M. K., (1996), Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition, Journal of biomechanical engineering, 118: 280-286.
. Budwig, R., Elger, O., Hooper, H., Slippy, J., (1993), Steady flow in abdominal aortic aneurysm models, Journal of biomechanical engineering, 115: 418-423.
. Callanan, A, Morris, L. G., McGloughlin, T. M., (2012), Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study, Computer Methods in Biomechanics and Biomedical Engineering, 15(10): 1111-1119.
. Costalat, V., Sanchez, M., Ambard, D., Thines, L., Lonjon, N., Nicoud, F., Brunel, H., Lejeune, J.P., Dufour, H., Bouillot, P., Lhaldky, J. P., Kouri, K., Segnarbieux, F., Maurage, C. A., Lobotesis, K., Villa-Uriol, M. C., Zhang, C., Frangi, A. F., Mercier, G., Bonafe, A., Sarry, L., Jourdan, F., (2011), Biomechanical wall properties of human intracranial aneurysms resisted following surgical clipping (IRRAs Project), Journal of Biomechanics, 44: 2685-2691.
. Finol, E. A., Amon, C. H., (2002), Flow-induced wall shear stress in abdominal aortic aneurysms: Part I - steady flow hemodynamics, computer Methods in Biomechanics and Biomedical Engineering, 4:309-318.
. Finol, E. A., Keyhani, K., Amon, C.H., (2002), The effect of asymmetry in abdominal aortic aneurysm under physiologically realistic pulsatile flow conditions, ASME Journal of Biomechanical Engineering, 125: 207-217.
. Fisher, C., Rossmann, J. S., (2009), Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms, Journal of Biomechanical Engineering, 131: 091004-1-9.
. Flora, H. S., Talei-Faz, B., Ansdell, L., Chaloner, E. J., Sweeny, A., Grass, A., Adiseshiah, M., (2002), Aneurysm wall stress and tendency to rupture are features of physical wall properties: an experimental study, J ENDOVASC THER, 9: 665-675.
. Gaillard, E., Deplano, V., (2005), Experimental study of the hemodynamics in an abdominal aortic aneurysm under physiological resting and exercise flow conditions, Computer Methods in Biomechanics and Biomedical Engineering, 109-110.
. Halabian, M., Karimi, A., Beigzadeh, B., Navidbakhsh, M., (2015), A numerical study on the hemodynamic and shear stress of double aneurysm through s shaped vessel, Biomedical Engineering: Applications, Basis and Communications, 27(4): 1550033-1-10.
. Hardman, D., Semple, S. I., Richards, J. M. J., Hoskins, P. R., (2012), Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease, International Journal Numerical Mathematical Biomedical Engineering, 29: 165-178.
. Hoi, Y., Woodward, S. H., Kim, M., Taulbee, D. B., Hui, M., (2006), Validation of cfd simulations of cerebral aneurysms with implication of geometric variations, journal of biomechanical engineering, 128: 844-851.
. Lee, C. J., Zhang, Y., Takao, H., Murayama, Y., Qian, Y., (2013), A fluid–structure interaction study using patient-specific ruptured and unruptured aneurysm: The effect of aneurysm morphology, hypertension and elasticity, Journal of Biomechanics, 46: 2402-2410.
. Li, Z., Kleinstreuer, C., (2007), A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid-structure interaction analysis, European Journal of Mechanics, Biomedical Fluids, 26(5): 615-631.
. Li, H., Chen, L., Huang, C., Jiang, Y., Wan, W., Dong, J., Peng, T., (2015), Hemodynamic features of unruptured cerebral aneurysms before rupture: A CFD study, Computational Molecular Bioscience, 5: 7-12.
. Liou, T. M., Li, Y. C., Juan, W. C., 2007, Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles, Journal of Biomechanics, 40: 1268-1275.
. Long, Y., Zhong, J., Yu, H., Yan, H., Zhuo, Z., Meng, Q., Yang, X., Li, H., (2015), A scaling aneurysm model‑based approach to assessing the role of flow pattern and energy loss in aneurysm rupture prediction, J Transl Med, 13.
. Ma, J., Turan, A., (2011), Pulsatile non-Newtonian haemodynamics in a 3D bifurcating abdominal aortic aneurysm model, Computer Methods in Biomechanics and Biomedical Engineering, 683-694.
. Marzo, A., Singh, P., Larrabide, I., Radaelli, A., Coley, S., Gwilliam, M., Wilikinson, D. I., Reymond, P., Lawford, P., Reymond, P., Patel, U., Frangi, A., Hose, D. R., (2010), Computational hemodynamics in cerebral aneurysm: the effect of modelled versus measured boundary conditions, Annals of Biomedical Engineering, 39(2): 884-896.
. Nair, P., Chong, W. B., Indahlastari, A., Lindsay, J., DeJeu, D., Parthasarathy, V., Ryan J., Babiker, H., Workman, C., Gonzalez, L. F., Frakes, D., (2016), Hemodynamic characterization of geometric cerebral aneurysm templates, Journal of Biomechanics. 49: 2118–2126.
. Paramasivam, V., Filipovic, N., Muthusamy, K., Kadir, M. R. A., (2010), Finite element modelling for solving pulsatile flow in a fusiform abdominal aortic aneurysm, Biomedicine International, 1: 50-61.
. Qing, W., Wei-zhe, W., (2009), Simulation of blood flows in intracranial ica-pcoma aneurysm via computational fluid dymamics modeling, Journals of Hydrodynamics, 24:583-590.
. Rodriguez, J. F., Ruiz, C., Doblare, M., Holzapfel, G. A., (2008), Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy, ASME, 130: 021023-1-10.
. Scotti, C. M., Shkolnik, A. D., Muluk, S. C., Finol, E. A., (2005), Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness, BioMedical Engineering OnLine, 4.
. Sheard, G. J., (2009), Flow dynamics and wall shear-stress variation in a fusiform Aneurysm, J Eng Math, 64: 379–390.
. Shupti, S. P., Sultana, R., Rabby, M. G., Molla, Md. M., (2013), Pulsatile laminar flows in a dilated channel using cartesian curvilinear coordinates, Universal Journal of Mechanical Engineering, 98-107.
. Soudah, E., Ng, E. Y. K., Loong, T. H., Bordone, M., Pua, U., Narayanan, S., (2013), CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with ct, Hindawi Publishing Corporation, Computational and Mathematical Methods in Medicine.
. Stamatopoulos, C., Papaharilaou, Y., Mathioulakis, D. S., Katsamouris, A., (2010), Steady and unsteady flow within an axisymmetric tube dilatation, Experimental Thermal and Fluid Science, 34: 915-927.
. Strother, C. M., Virgil, B., Graves, V. B., Rappe, A., (1992), Aneurysm hemodynamics: an experimental study, AJNR, 13: 1089-1095.
. Valencia, A., Solis, F., (2006), Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery, Computers and Structures, 1326–1337.
. Valencia, A., Torres, F., (2016), Effects of hypertension and pressure gradient in a human cerebral aneurysm using fluid structure interaction simulations, Journal of Mechanics in Medicine and Biology, 17(2): 1750018-1-17.
. Veshkina, N., Zbicinski, I., Stefanczyk, L., (2014), 2D FSI determination of mechanical stresses on aneurismal walls, Bio-Medical Materials and Engineering, 24: 2519-2526.
. Vorp, D. A., Raghavan, M. L., Webste,r M. W., (1998), Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry, Journal of vascular surgery, 27(4): 632-639.
. Xiang, J., Siddiqui, A. H., Meng, H., (2014), The effect of inlet wave forms on computational hemodynamics of patient-specific intracranial aneurysms, Journal of Biomechanics, 3882–3890.
DOI: http://dx.doi.org/10.1000/ijses.v0i0.139
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 International Journal Series in Engineering Science (IJSES) (ISSN: 2455-3328)

This work is licensed under a Creative Commons Attribution 4.0 International License.